Problematika řešená v podzemních laboratořích

Ivan Štekl Ústav technické a experimentální fyziky, ČVUT v Praze

- 1) Úvodní poznámky
- 2) Podzemní laboratoř LSM (Francie)
- 3) Experiment TGV
- 4) Experiment NEMO-3
- 5) Technologie v oblasti ultra-nízkého radioaktivního pozadí (radon, citlivá HPGe spektroskopie, pixelové detektory)

Současný přehled výzkumné činnosti:

Částicová fyzika a vývoj příslušných detekčních systémů
 LHC v CERN, experimenty ATLAS, MoEDal, teorie.

2) Neutrinová fyzika, fyzika atomového jádra a astrofyzika

- dvojitý beta rozpad v podzemní laboratoři LSM (Francie),

- detekce dark matter v podzemní laboratoř SNOLAB (Kanada)
- štěpení těžkých jader, struktura hypertěžkých jader, astrofyzikální reakce.

3) Detekce vysokoenergetického kosmického záření, detekce gama záření

- experiment CZELTA (spolupráce se středními školami),
- experiment GROND (spolupráce s MPI, Německo; v Chile),

 projekty sledování radiace a energetických částic ve vesmíru (detektory TPX na ISS NASA, družice Proba-V ESA, projekt RISESAT (Japonsko).

4) Aplikovaná experimentální fyzika

- vývoj pixelových a stripových detektorů, vývoj scintilačních detektorů
- zobrazování pomocí X-záření a neutronů
- biomedicínské aplikace, hadronová terapie
- nedestruktivní testování.

ÚTEF jako distribuovaná výzkumná infrastruktura v ČR i zahraničí:

1) Velké výzkumné infrastruktury

- urychlovač Van de Graaff (výzkumná infrastruktura ČR)
- podzemní laboratoř LSM (Francie, výzkumná infrastruktura ČR).

2) Laboratoře ÚTEF

- Centrální detektorová a analytická laboratoř ČVUT
- čisté prostory
- RTG a mamograf
- elektronická laboratoř, mechanická dílna
- radonová laboratoř.

3) Společná pracoviště v ČR

- laboratoř skenovacího elektronového mikroskopu (ÚTEF + FD)
- laboratoř MARS-CT (ÚTEF + 3. lékařská fakulta UK)
- urychlovač VdG (spolupráce s FJFI)
- laboratoř RTG (ÚTEF + ÚTAM)
- radonová laboratoř (ÚTEF + SÚRO)
- testovací laboratoř pro scintilační detektory (ÚTEF + ENVINET a.s.).

LSM (Francie)

Tunel Fréjus (Francie-Itálie): Dohoda JOULE (CNRS, CEA-SÚJV-RFBR-ČR-SR) 1760 m skály, 4800 mwe Potlačení toku μ - 0.5 x 10⁻⁶

Potlačení neutronů (E>1MeV) - 10⁻³

Hlavní hala - $30x10x11m^3$ (70 m²,18 m²,21m²).

16 Ge nízkopozaď ových detektorů

Testy konstrukčních materiálů pro experimenty geologie, archaeologie, biologie, bezpečnost... Testy elektroniky,....

ββ rozpad - NEMO-3, SuperNEMO, TGV, SPT, OBELIX DM – EDELWEISS, SEDINE, MIMAC

Royšíření LSM:OBELIXPlán rozšíření o 11000 m³DM – EDELWEISSuperNEMO, EURECA, TGV, HPGe spectroscopy,...

Neutrinová problematika řešená v ÚTEF ČVUT:

- 1) $2\nu\beta\beta$ a $0\nu\beta\beta$ rozpad
- experiment NEMO-3 (ukončen), SuperNEMO (ve výstavbě), COBRA (R&D CdTe pixelových detektorů)

2) 2vEC/EC rozpad

- experiment TGV (běžící), SPT (R&D Si pixelových detektorů)

3) Vzbuzené stavy $2\nu\beta\beta$ rozpadu

- HPGe detektor OBELIX (běžící)

4) Vývoj teorie

- Jaderné maticové elementy

5) Detekce reaktorových antineutrin

- na bázi spolupráce s SÚJV Dubna, detektor S³ (ve výstavbě)

EXPERIMENT TGV (IEAP CTU, JINR, CSNSM, CU, RRC)

TGV I (1996-2000) NIM A372 (1996) 222

TGV II (2004-2010) NIM A569 (2006) 737

Phys. Lett. B495 (2000) 63

Nucl. Phys. A 852 (2011) 187-206

Současný stav a plány do budoucna:

- 1. TGV pokračuje s 23 gramy vysoce obohaceného 106 Cd (2vEC/EC)
- 2. Provádění studií (MC, teorie, pozadí) –

 a) možnost měření 2vEC/EC rozpadu s jinými izotopy (¹⁶²Er, ¹⁵⁶Dy) V.Ceron, J.Hirsch, arXiv:nucl-th/9911021v1
 b) možnost měření 0vEC/EC rozpadu (¹⁵²Gd g.s., ¹¹²Sn exc. state– resonanční zesílení procesu 0vEC/EC pro Q Q_r < 1 keV)
 Z.Sujkowski, S.Wycech, Phys. Rev. C70, 052501, 2004
 J.Bernabeu, A. deRujula, C.Jarlskog, Nucl. Phys. B223, 15 (1983)
 <u>signature</u> X-rays < 100 keV + γ or e^{-e+} nebo Majoron výhoda: poměr mezí 0vEC/EC a 2vEC/EC rozpady
- Pixelové detektory (Si) v EC/EC rozpadu 1 mm, koincidenční měření, pozice detekce, energie X-fotonů)

Experiment NEMO-3

(France, UK, Czech Republic, Russia, Spain, USA, Japan, Ukraine, Finland, Slovakia)

Izotop	Τ_{1/2} ^{ββ2ν}	700 000 2νββ events ¹⁰⁰ Mo		
¹⁰⁰ Mo	[7.16 ± 0.01 (stat) ± 0.54 (sys)] 10 ¹⁸ y	Signal/Backgr. ratio: 76		
⁸² Se	[9.6 ± 0.1 (stat) ± 1.0 (sys)] 10 ¹⁹ y	start of operation: 2003		
¹¹⁶ Cd	[2.88 ± 0.04 (stat) ± 0.16 (sys)] 10 ¹⁹ y	end of operation: January 2011		
¹³⁰ Te	[7.0 ± 0.9 (stat) ± 0.9 (sys)] 10 ²⁰ y	¹⁰⁰ Mo $T_{1/2}$ ($\beta\beta0\nu$) > 1.0 10 ²⁴ y		
¹⁵⁰ Nd	[9.11 + 0.25 – 0.22(stat) ± 0.63 (sys)] 10 ¹⁸ y	$< m_v > < 0.3 - 0.9 \text{ eV}$		
⁹⁶ Zr	[2.36 ± 0.21] 10 ¹⁹ y	[Phys. Rev. D. 89.111101 (2014)]		
⁴⁸ Ca	[4.4 + 0.5 – 0.4 (stat) ± 0.4 (sys)] 10 ¹⁹ y			
1 - CAL	z ČR: ÚTEF	NEMO-3 "camembert" (source top view)		
	ČVUT, MFF UK	⁴⁶ Ca ⁵⁵ Nid ⁹⁶ Zr ⁷ ¹⁰⁰ Mo ¹⁰⁰ Mo		

1

1

130Te

100MO

100Mo

OM

(TMO

OMO

100 14

10

Cu

™те

116Cd

130Te

19

**6Cd 0,40 kg

***Nd 36,5 g

%Zr 9,43 g

4ºCa 6,99 g

- <u>A(222Rn) in LSM</u> ~ 10-15 Bq/m³
- <u>May 2004</u>: detector NEMO-3 in tent A(222 Rn) ~ Bq/m³
- Antiradon setup: starts running Oct. 2004
- 2x500 kg charcoal @ -50°C, 7 bars
- Activity: A(²²²Rn) < 10 mBq/m³ !!! Flux: 150 m³/h (produced by ATEKO company, Czech rep.)

Free-Radon Air factory

Approaches to double beta studies

GERDA

Detector =

source

SuperNEMO Tracking +

scintillator

CUORE Low-temp. detector

Semiconductor + segmentation

COBRA

TGV II

Setup based on semiconductor detectors

Pixel R&D projects

COBRA extension

- Segmented CdTe pixel detectors (enriched Cd)
- Signature = two tracks of electrons from one pixel, Bragg curve
- Particle identification / rejection (alpha, electrons, photons)

SPT (EC/EC)

- Si pixel detectors in coincidence mode
- Thin foil of enriched isotope
- Signature = two hit pixels with X-rays of precise energy
- Efficiency (factor 2x comparing with TGV II)
- Particle identification (alpha, electrons)

Single-side events

<u>Shrnutí:</u>

- 1) Naměřen poločas rozpadu procesu $2\nu\beta\beta^{48}$ Ca (TGV, NEMO-3)
- 2) Posunutí limitu poločasu rozpadu 2vEC/EC ¹⁰⁶Cd (TGV)
- Spoluúčast na měření poločasu rozpadu procesu 2νββ celkem 7 izotopů (NEMO-3)
- 4) Naměřen poločas rozpadu procesu 2νββ ¹⁰⁰Mo (vzbuzený stav) (OBELIX, NEMO-3) a ¹⁵⁰Nd (NEMO-3)
- Pozn. (2vββ byl naměřen pro 11 izotopů, vzbuzený stav pro 2 izotopy, přechod 2vEC/EC pro 2 izotopy)
- 5) Vývoj teorie dvojitého rozpadu beta
- 6) Vývoj potřebných technologií (detektory, velmi nízké pozadí,...)
- 7) Pravidelná mezinárodní konference MEDEX (9.-12.6., již desáté pokračování, medex15.utef.cvut.cz, publikováno AIP)
- Pontecorvo letní škola o neutrinové fyzice (SR, ČR, SÚJV; 27.8.-4.9.2015, Horní Smokovec; <u>http://theor.jinr.ru/~neutrino15/</u>, org. výbor – V.A.Matveev chair, vice-chairs S.M. Bilenky, F. Šimkovic, I. Štekl, A.G.Olshevskiy).

Děkuji za pozornost

How it compares with calculations

Table 2

A comparison of measured lower bound for the 2ν EC/EC decay half-life (in years) of 106 Cd for ground state to ground state transition with calculated half-lives of different nuclear structure approaches. QRPA - quasiparticle random phase approximation, RQRPA - renormalized QRPA, SQRPA - selfconsistent QRPA, PHFB - projected Hartre-Fock-Bogoliubov model, SSDH - single state dominance hypothesis, WS - Woods Saxon single particle energies (s.p.e.), AWS - adjusted WS s.p.e., s.b. (l.b) - small (large) basis of single particle states.

Experiment	Phenomenology		Theory			
$T_{1/2}^{2\nu ECEC} \text{Ref.}$	$T_{1/2}^{2\nu ECEC}$	Ref.	$T_{1/2}^{2\nu ECEC}$		Method	Ref.
			$g_A=1.0$	$g_A=1.25$		
$> 5.8 \ 10^{17}$ (29)	$> 5.3 \ 10^{21}$	(30)	$4.2 10^{21}$	$1.7 10^{21}$	SU(4)	(19)
> 4.2 10 ²⁰ p.w.	$> 4.4 \ 10^{21}$	(11)	$2.5 10^{22}$	$9.7 10^{21}$	\mathbf{PHFB}	(10)
			$2.2 10^{21}$	$8.7 10^{20}$	QRPA	(12)
			$1.5 \ 10^{20}$	$6.1 10^{19}$	QRPA	(13)
			$2.3 10^{20}$	$9.0 10^{19}$	QRPA (WS)	(14)
			$2.6 10^{20}$	$1.1 \ 10^{20}$	QRPA (AWS)	(14)
			$5.5 10^{21}$	$2.3 10^{21}$	QRPA (WS)	(16)
			$3.0 10^{20}$	$1.2 \ 10^{20}$	QRPA (AWS)	(16)
closed			$5.3 \ 10^{20}$	$2.1 10^{20}$	RQRPA (WS)	(17)
approaching			$5.1 \ 10^{20}$	$2.0 10^{20}$	RQRPA (AWS)	(17)
			$5.0 \ 10^{20}$	$2.0 10^{20}$	SQRPA (s.b.)	(18)
			$6.6 \ 10^{20}$	$2.6 \ 10^{20}$	SQRPA (l.b.)	(18)

NEMO detector dismantling

The SuperNEMO experiment

SuperNEMO design

ヘロット 山田 マイビット 山田 うらつ

Scientific program in underground laboratories:

- I. Solar neutrinos
- II. Double beta decay
- III. Dark matter
- IV. Decay of proton
- V. Atmospheric neutrinos
- VI. Oscillation of neutrinos (reactor)

<u>Purpose of underground laboratory:</u>

- VII. Supernovae neutrinos
- VIII. Geology
- IX. Microbiology
- X. Measurement of low activities of materials
- XI. Monitoring of environment

- to provide a very deep experimental facility to shield detectors from cosmic rays

- to provide very clean and very low background environment (γ rays shielding, neutron shielding, radon free air, selection of clean construction materials...).

Easy access, by cars

Gran Sasso National Laboratory LNGS (Italy); Baksan (Russia), Laboratorio Subterraneo de Canfranc LSC (Spain), Laboratoire Suterein Modane LSM (France) – planned extension by factor 20. Andes (future lab – Osvaldo's talk).

<u>Laboratories in mines</u>

Sudbury National Observatory SNO (Canada), Kamioka (Japan), Boulby (UK) Pyhasalmi Laboratory (Finland), Solotvina (Ukraine)

Why we need underground laboratories? Example: half-life for Ονββ:

- source = enriched material (F_a)
- big mass of the source (M)
- long time of measurement (t)
- "best" energetical resolution of the detector (ΔE)
- background as low as possible (B)

Experiment Silicon Pixel Telescope (SPT)

- TGV III experiment (Location: LSM Modane)
- Measurement of 2v EC/EC (g.s. to g.s) in ¹⁰⁶Cd

 $2e + {}^{106}_{48}Cd \rightarrow {}^{106}_{46}Pd + 2v_e + (\gamma, X - rays)$

 $Q_{EC/EC} = 2778 \, keV$, ROI: $19 \, keV \le E_X \le 23 \, keV$

TGV II detector idea

HPGe

HPGe

Cd

- Signature of the process:- 2 X-rays (21 keV) in coincidence
- Majority of above signature events will form Single Side Events (SSE) and Double Side Events (DSE)
- SSE occurs when both event deposit on same side
- DSE occurs when events deposit on opposite side

SPT idea¹⁹

Flex-Rigid SPT

Support system

Schematic of flex-rigid SPT

Flex-Rigid prototype

Close-up of the Si-Cd-Si "snadwitch", with 50 µm nat. Cd, 500 µm Si sensors

Six categories of characteristic patterns were introduced in "tracking mode":

- 1) Dot Gamma and X-rays
- 2) Small blob Gamma and X-rays, low energy electrons
- 3) Curly track electrons (MeV range)
- 4) Heavy blob energetic particles with low range (alpha particles,...)
- 5) Heavy track energetic heavy charged particles (protons,...)
- 6) Straight track energetic light charged particles (MIP, Muons,...)

Data Visualization Application is open to internet:

http://cern.ch/atlas Operation -> Radiation monitors -> ATLAS-MPX

Applications:

- Organizing international conferences, Education of young students (summer schools), lectures for public.
- Workshop on calculation of double-beta-decay matrix elements (MEDEX) organized by IEAP CTU, Univ. of La Plata, Univ. of Jyväskylä. First workshop – 1997 (every two years). Leading theoreticians and experimentalists in the field (40-50 participants). Student session. Printed by AIP (e.g. AIP Conference proceedings 1417).
- Summer school Nuclear physics and Accelerators in Biology and Medicine organized by IEAP CTU, Adam Mickiewicz Univ., JINR from 1999 every two years. 80-100 students having also possibility to present their results. Printed by AIP (e.g. AIP Conference proceedings 958, 1204).
- 3. <u>Conference IWORID</u> Radiation Imaging detectors, 2009 in IEAP CTU, printed by Elsevier, editors J. Jakubek, M. Jakubek, S. Pospisil, Z. Vykydal.
- 4. <u>University of 3rd age</u> two lectures (one semester each), "Secrets of microworld", "Laws of microworld". Almost 400 participants.

Future scientific plans in fundamental research:

- 1) <u>Particle physics: CERN, ATLAS, MoeDal, theory</u> important part of our fundamental research. IEAP is a experimental base of CTU in particle and nuclear physics, but after 10 years the role of theory is substantially increased (interpretation of experimental data).
- 2) <u>Non-accelerator experiments:</u>
- a. TGV to reach level of 10²¹ years for EC/EC decay using TGV II spectrometer and Si Timepix stacks.
- b. SuperNEMO broad international collaboration in ββ decay, leadership in Radon Task Group (1 of 5), participation on testing of scintillating detectors, HPGe spectroscopy.
- c. COBRA $\beta\beta$ decay of ¹¹⁶Cd, our responsibility = CdTe pixel detectors, MC simulations, data processing from pixel detectors.
- PICASSO Canadian experiment in SNO lab (dark matter), our responsibility = participation in low background methods, data processing (new postdoc position at IEAP).
- *3)* <u>Nuclear physics</u> superheavy elements, hypernuclei (cooperation with JINR), experiments at VdG, experiments with pixel detectors.

Výsledky TGV

<u>1) měření s ⁴⁸Ca</u> – 2v $\beta\beta$, Nuclear Physics A700(1-2) (2002) 17-24 $T_{1/2}^{2\nu\beta\beta} = (4.2^{+3.3}_{-1.3}) \times 10^{19} \text{ y}$ $T_{1/2}^{0\nu\beta\beta} > 1.5 \times 10^{21} \text{ y}$ (90% CL) <u>2) měření s ¹⁰⁶Cd</u> – 2vEC/EC, g.s \rightarrow g.s. $2e + \frac{106}{48}Cd \rightarrow \frac{106}{46}Pd + 2v_e + (\gamma, X - rays)$

