



# Searching for 0vββ with EXO-200 and nEXO

- Motivation for  $\beta\beta$  search
- The EXO-200 experiment
- The nEXO project

Thomas Brunner for the nEXO collaboration December 5, 2017

## What we know about neutrinos



## Neutrino oscillations

In Quantum Mechanics there are 2 representations for our neutrinos if  $m_y \neq 0$ :

 "Weak interaction eigenstate" this is the state of definite flavor: interactions couple to this state



A source produces –say- v<sub>e</sub> always via weak interactions

"Mass eigenstate"

this is the state of definite energy: propagation happens in this state

 $\begin{pmatrix} V_{m1} \\ V_{m2} \\ V_{m3} \end{pmatrix} \qquad \begin{array}{l} V_{m1}(t) = e^{-i(E_{1}t - p_{1}L)}V_{m1} \\ V_{m2}(t) = e^{-i(E_{2}t - p_{2}L)}V_{m2} \\ V_{m3}(t) = e^{-i(E_{3}t - p_{3}L)}V_{m3} \\ \end{array}$ 

Thomas Brunner

## Neutrino oscillations – mixing matrix

The 2 eigenstates are connected by a 3.3 matrix ("mixing matrix")

$$\begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} v_{m1} \\ v_{m2} \\ v_{m2} \end{pmatrix}$$

#### Pontecorvo–Maki–Nakagawa–Sakata matrix

## What we know about neutrinos





## Double beta decay

M.Goeppert-Mayer, Phys. Rev. 48 (1935) 512

The most promising approach to determine the nature of the neutrino! Lepton number is violated in this decay!





Ettore Majorana

### This process can only occur for a Majorana neutrino!

n

**Thomas Brunner** 

## Neutrinoless double beta decay



## Neutrinoless double beta decay



December 5, 2017

## Double Beta Decay



- If first-order beta decay is forbidden energetically or by spin, secondorder double beta decay (a weak nuclear process) can be observed
- True for several isotopes such as: <sup>48</sup>Ca, <sup>76</sup>Ge, <sup>130</sup>Te, <sup>136</sup>Xe

## Searching for $0\nu\beta\beta$ in $^{136}\text{Xe}$ with EXO



### Liquid-Xe Time Projection Chamber

- Liquid Xe at 168K
- Cryogenic electronics in LXe
- Detection of scintillation light and secondary charges
- 2D read out of secondary charges at segmented anode
- Full 3D event reconstruction:
  - 1. Energy reconstruction
  - 2. Position reconstruction
  - 3. Event Multiplicity

### Natural radiation decay rates

| A banana                   | ~10 decays/s    |
|----------------------------|-----------------|
| A bicycle tire             | ~0.3 decays/s   |
| 1 l outdoor air            | ~1 decay/min    |
| 100 kg of $^{136}$ Xe (2v) | ~1 decay/10 min |
|                            |                 |

 $T_{1/2}^{0v} > 10^{25}$  years !!

- $\circ$  high target mass
- $\circ$  high exposure
- low background rate
- good energy resolution

10

 $0\nu\beta\beta$  decay Age of universe

>10000 x rarer than  $2\nu\beta\beta$  1.4 x 10^{10} years

## Searching for $0\nu\beta\beta$ in $^{136}\text{Xe}$

- Easy to enrich: 8.9% natural abundance but can be enriched relatively easily (better than growing crystals)
- Can be purified continuously, and reused
- High Q<sub>ββ</sub> (2458 keV): higher than most naturally occurring backgrounds
- Minimal cosmogenic activation: no long-life radioactive isotopes
- Energy resolution: improves using scintillation and charge anti-correlation
- LXe self shielding
- Background can be potentially reduced by Ba<sup>++</sup> tagging

Phased approach:

1. EXO-200: 200kg liquid-Xe TPC, taking data



2. nEXO: future 5-ton liquid Xe TPC with Ba tagging option (SNO lab cryopit)



## EXO-200

- Located at the Waste Isolation Pilot Plant at 32°22′30″N 103°47′34″W (Carlsbad, NM).
- 2150 feet depth (~655m),
   ≈1585 mwe flat overburden
- U.S. DOE permanent repository for nuclear waste
- Low radioactivity levels:
  - U, Th <100ppb

December 5, 2017

 Radon background < 10 Bq/m<sup>3</sup>





Muon veto

ESSINGTON

• 50 mm thick plastic scintillator panels

\$3

.

OILLON

- surrounding TPC on four sides
- 95.5 ± 0.6 % efficiency
- Veto cuts (8.6% combined dead time)
- 25 ms after muon veto hit
- 60 s after muon track in TPC
- 1 s after every TPC event

- Copper vessel 1.37 mm thick
  175 kg LXe, 80.6% enr. in <sup>136</sup>Xe
  Copper conduits (6) for:
- •APD bias and readout cables
- •U+V wires bias and readout
- •LXe supply and return
- •Epoxy feedthroughs at cold and warm doors
- •Dedicated HV bias line

 EXQ-200 detector:
 JINST 7 (2012) P05010

 Characterization of APDs:
 NIM
 A608 68-75 (2009)

 Materials screening:
 NIM
 A591, 490-509 (2008)



### EXO-200 Phase-I Results

### Precision <sup>136</sup>Xe 2vββ Measurement



### Longest and most precisely measured $2\nu\beta\beta$ half-life

$$T_{1/2}^{0\nu\beta\beta} > 1.1 \cdot 10^{25} \text{ yr}; \quad \left\langle m_{\beta\beta} \right\rangle < 190 - 450 \text{ meV} \quad (90\% \text{ C.L.})$$

Nature 510, 229 (2014) Phys. Rev. Lett. 109, 032505 (2012)

## The 2014 incidents



Event locations more than 2,300 feet apart



EXO-200 is about

1.2 km from the

radiation event

- Feb. 5 2014: Fire in WIPP underground
- Feb. 14, 2014: Radiation release event
- So far no radioactivity has been measured at EXO-200
- EXO clean up finished
- Low background data taking resumed in April 2016

## Detector Upgrades in Phase II

### Front end electronics:

- Reduced APD read-out noise
- Increased high voltage
  - -8kV → -12 kV
- Effect in energy resolution:
  - Phase-I: *σ*/*E*(*Q*) = 1.38%
  - Phase-II: σ/E(Q) = 1.23%, steady



### Deradonator:

- System to suppress radon in air gap
- Direct air sampling shows radon levels reduced in the gap by >10x



## Energy measurement



- Anticorrelation between scintillation and ionization in LXe known since early EXO R&D [E.Conti et al. Phys Rev B 68 (2003) 054201]
- Rotation angle determined weekly using <sup>228</sup>Th source data, defined as angle which gives best rotated resolution
- EXO-200 has achieved ~ 1.23% energy resolution at the double-beta decay Q value in Phase II.

## Position and multiplicity

### Allows for background measurement and reduction

Events with > 1 charge cluster: multi-site events Events with 1 charge cluster: single-site events.



<sup>228</sup>Th calibration data, SS:

<sup>228</sup>Th calibration data, MS:



## Improved γ-background Rejection

Additional discrimination in SS using spatial distribution and cluster size

LXe self-shielding:

Entering  $\gamma$ -rays are exponentially attenuated by LXe self-shielding, providing an independent measurement of  $\gamma$ -backgrounds. We call this standoff distance.

The cluster size of individual events is estimated from pulse rise time (longitudinal direction) and the number of wires with a charge collection signal (transverse).



## Optimal $0 \nu \beta \beta$ Discrimination

• Optimize SS discriminators into a more powerful one





• Fitting  $0 \nu\beta\beta$  discriminators • Energy • SS/MS • BDT  $\rightarrow \sim 15\%$  sensitivity improvement

## $0\nu\beta\beta$ Search Results

- Background model + data  $\rightarrow$  maximum likelihood fit
- Combine Phase I + Phase II profiles



- Background index ~  $1.5 \pm 0.2 \times 10^{-3}$  counts/(kg yr keV)
- No statistically significant excess: combined p-value ~1.5σ

## Sensitivity & Limits

Combined analysis of Phase I and Phase II:

• Total exposure = 177.6 kg yr

Sensitivity of 3.7 x  $10^{25}$  yr (90% CL)  $T_{1/2}^{0\nu\beta\beta} > 1.8 \times 10^{25}$  yr  $\langle m_{\beta\beta} \rangle < 147 - 398$  meV (90% C.L.)

• Individual phase limits

|          | Livetime | Exposure    | Limit (90% CL)                                       |  |
|----------|----------|-------------|------------------------------------------------------|--|
| Phase I  | 596.7 d  | 122.0 kg.yr | $T_{1/2}^{0\nu\beta\beta}$ > 1.0x10 <sup>25</sup> yr |  |
| Phase II | 271.8 d  | 55.6 kg.yr  | $T_{1/2}^{0\nu\beta\beta}$ > 4.4x10 <sup>25</sup> yr |  |

### Caio Licciardi, TAUP 2017 and arXiv:1707.08707

## Current best $0\nu\beta\beta$ sensitivities

| lsotope           | Experiment               | Exposure<br>(kg yr) | $T_{1/2}^{0\nu\beta\beta}$<br>average<br>sensitivity<br>(10 <sup>25</sup> yr) | $T_{1/2}^{0 uetaeta}$<br>(10 <sup>25</sup> yr)<br>90%CL | $< m_{ m v}>$ (meV)<br>Range<br>from<br>NME* | Reference                                 |
|-------------------|--------------------------|---------------------|-------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------|-------------------------------------------|
| <sup>76</sup> Ge  | GERDA                    | 46.7                | 5.8                                                                           | >8.0                                                    | <120-270                                     | L. Pandola for GERDA<br>Collab, TAUP 2017 |
|                   | Majorana<br>Demonstrator | 10                  | >2.1                                                                          | >1.9                                                    | <240-520                                     | C.E. Aalseth,<br>arXiv:1710.11608v1       |
| <sup>130</sup> Te | CUORE                    | 86.3                | 0.7                                                                           | >1.5                                                    | <140-400                                     | C. Alduino, et al.,<br>arXiv:1710.07988v1 |
| <sup>136</sup> Xe | EXO-200                  | 177.6               | 3.7                                                                           | >1.8                                                    | <147-398                                     | Albert et al. arXiv:<br>1707.08707 (2017) |
|                   | KamLAND-<br>ZEN          | 504**               | 4.9                                                                           | >11 (run 2)                                             | <60-161                                      | Gando et al., PRL 117<br>(2016) 082503    |

Note that the range of "viable" NME is chosen by the experiments and uncertainties related to  $g_A$  are not included. \*\* All Xe. Fiducial Xe is more like ~150 kg yr

To achieve higher sensitivity, the next generation of experiments will be at the ton-scale. <sup>26</sup>

## $\gamma$ backgrounds – a challenge in $0\nu\beta\beta$ search



Shielding  $0\nu\beta\beta$  decay detectors is much harder than shielding dark matter detectors We are entering the "golden era" of  $0\nu\beta\beta$  decay experiments as detector sizes exceed interaction length December 5, 2017

## Monolithic detectors



## nEXO discovery potential



## **nEXO 10 year discovery potential at** $T_{1/2}$ =5.7x10<sup>27</sup> yr J.B. Albert et al., "Sensitivity and Discovery Potential of nEXO to Neutrinoless Double Beta Decay", arXiv:1710.05075, 16 Oct 2017.

## Searching for $0\nu\beta\beta$ with nEXO



## Analog SiPMs - baseline solution for nEXO

20µm

(1000

- High gain (low noise)
- Large manufacturing capabilities ( > 4 m<sup>2</sup>)
- But efficiency and radioactivity need work

1.3x1.3 mm<sup>2</sup> T2K Multi-Pixel Photon counter Pictures courtesy of Kyoto University



### **Requirements:**

- Efficiency at 175nm > 15%
- Correlated avalanche rate < 20%
- Dark noise rate < 50Hz/mm<sup>2</sup>
- Low radioactivity

<u>2mm</u>

## SiPM Photodetector

At least one type of 6 x 6 mm<sup>2</sup> VUV devices now match our desired properties, with a bias requirement ~30V (as opposed to the 1500V of EXO-200 APDs)



FBK standard field SiPM: Th = 0.44+/-0.05 ppt, U = 0.99+/-0.02 ppt

## 3D-integrated dSiPM for nEXO

Advantages over analog SiPM + analog electronics

- All in one chip assembly: photon come in, bits come out
- Low power: Power scales with avalanche count not with capacitance
- Allow lower power or better timing resolution and granularity
- After-pulsing can be completely eliminated for a given time scale

Challenges

- Need custom SPAD array
- Large scale scaling
- Significant R&D required





## Photon sensors



## Charge Readout

Charge will be collected on arrays of strips fabricated onto low background dielectric wafers (low radioactivity quartz has been identified)

- Self-supporting/no tension
- Built-on electronics (on back)
- Far fewer cables
- Ultimately more reliable, lower noise, lower activity



Max metallization cover with min capacitance

- 10 x 10cm<sup>2</sup> Prototype Tile
- Metallized strips on fused silica substrate
- 60 orthogonal channels (30 x 30), 3mm strip pitch
- Strip intersections isolated with SiO<sub>2</sub> layer

### Characterization of an Ionization Readout Tile for nEXO, M. Jewell arXiv:1710.05109





Characterization of an Ionization Readout Tile for nEXO, M. Jewell arXiv:1710.05109

December 5, 2017

## nEXO Sensitivity & Discovery Potential



## Ba-tagging concept

- 1. Localize event
- 2. Is the event of interest?
  - Close to Q-value?
  - Beta-like event?
- 3. Extract ion from detector ? volume
- 4. Identify ion: is it barium?

Ion Fraction Measurement with EXO-200  $^{214}\text{Bi}^+$  from  $^{214}\text{Pb}\ \beta$  decay: 76.4  $\pm$  5.7% Phys. Rev. C 92(2015)045504





Ba tagging R&D ongoing for liquidand gas-phase detector 38

December 5, 2017

## Barium tagging in solid xenon @ CSU

#### **Tagging concept**

1, Capture Ba<sup>+</sup> daughter in solid xenon on a probe: 2, Detect single Ba<sup>+</sup> or Ba on probe by fluorescence:

laser

solid Xe

fiber

CCD







### Successful spectroscopy of Ba-ions in SXe (CSU)

### Technique to reach small-number sensitivity:

- 1. Focus laser down to  $w = 2.3 \mu m$  for small viewing area
- 2. Pulse ion beam with varying numbers of pulses

### Imaging 619nm Fluorescence ~220 cts/(atom \*mW)

≤ 60-atom ≤ 30-atom ≤ 10-atom 0-atom stuno 200 200 01 75 200 80 80 60 150 60 40 100 40 20 50 20 0-95 270 2065 Dic 60 L70 65 70 25 30 25 20 20 20 20 Pixels 4.7µm

## Ba-ion extraction and identification – the Canadian approach



- Extract Ba<sup>+(+)</sup> from liquid Xe TPC into a Xe gas environment
- Extract Ba<sup>+(+)</sup> with a Xe gas jet into a low pressure chamber
- After nozzle, pump Xe gas away and guide Ba<sup>+(+)</sup> to identification

## Ba ion detection & identification (Carleton)





Demonstrated ion cloud imaging and accurate position control



Demonstrated by M. Green et al., Phys. Rev. A 76 023404 (2007)

Demonstrated single ion sensitivity using intermodulation technique (background control)



## Stanford RF funnel (now at McGill)



### **RF-funnel concept:**

- Converging-diverging nozzle
- 2 Stacks total 301 electrodes
- RF-field applied to electrodes
- $P_A = 10$  bar,  $P_B = 1$  mbar

V<sub>RF</sub> = 120 V, f = 10 MHz Simulated Ba<sup>+</sup> transmission ~95%

 $V_{RF} = 25V, f = 2.6 MHz$ Simulated Ba<sup>+</sup> transmission ~72%

## Stanford RF funnel (now at McGill)





V<sub>RF</sub> = 120 V, f = 10 MHz Simulated Ba<sup>+</sup> transmission ~95%

V<sub>RF</sub> = 25V, f = 2.6 MHz Simulated Ba<sup>+</sup> transmission ~72%

## Ion extraction from xenon gas



- Ba-ions not identified!
- Ion extraction efficiency unknown!
- Ion extraction up to 10 bar

Int. J. Mass. Spectrom. (2015) doi:10.1016/j.ijms.2015.01.003

## $0\nu\beta\beta$ search with EXO

### Multi-phase program :

- **EXO-200** operational at WIPP mine:
  - ~175kg xenon enriched at ~80%
  - Current limit on 0vββ: 1.8 x 10<sup>25</sup> years (EXO-200)
  - Continue data taking for 1.5 more years
  - Sensitivity: 100-200 meV
- **nEXO** R&D underway:
  - 5T xenon enriched at ~90%
  - Sensitivity: 5-30 meV
  - Improved techniques for background suppression and possibly Ba tagging



## Summary

- 0vββ is the most practical way to test the Majorana nature of neutrinos.
- An observation of 0vββ always implies 'new' physics!



University of Alabama, Tuscaloosa AL, USA M Hughes, I Ostrovskiy, A Piepke, AK Soma, V Veeraraghavan **University of Bern**, Switzerland — J-L Vuilleumier Brookhaven National Laboratory, Upton NY, USA M Chiu, G Giacomini, V Radeka, E Raguzin, T Rao, S Rescia, T Tsang California Institute of Technology, Pasadena CA, USA — P Vogel **Carleton University**, Ottawa ON, Canada — I Badhrees, M Bowcock, W Cree, R Gornea, K Graham, T Koffas, C Licciardi, D **Colorado State University**, Fort Collins CO, USA – C Chambers, A Craycraft, W Fairbank Jr, D Harris, A Iverson, J Todd, T Walton Drexel University, Philadelphia PA, USA MJ Dolinski, E Hansen, YH Lin, E Smith, Y-R Yen **Duke University**, Durham NC, USA – PS Barbeau University of Erlangen-Nuremberg, Erlangen, Germany G Anton, R Bayerlein, J Hoessl, P Hufschmidt, A Jamil, T Michel, M Wagenpfeil, T Ziegler IBS Center for Underground Physics, Daejeon, South Korea DS Leonard IHEP Beijing, People's Republic of China — G Cao, W Cen, Y Ding, X Jiang, Z Ning, X Sun, T Tolba, W Wei, L Wen, W Wu, X Zhang, J Zhao **IME Beijing**, People's Republic of China – L Cao, X Jing, Q Wang ITEP Moscow, Russia — V Belov, A Burenkov, A Karelin, A Kobyakin, A Kuchenkov, V Stekhanov, O Zeldovich University of Illinois, Urbana-Champaign IL, USA D Beck, M Coon, S Li, L Yang Indiana University, Bloomington IN, USA JB Albert, S Daugherty, G Visser University of California, Irvine, Irvine CA, USA — M Moe

Laurentian University, Sudbury ON, Canada B Cleveland, A Der Mesrobian-Kabakian, J Farine, A Robinson, U Wichoski Lawrence Livermore National Laboratory, Livermore CA, USA O Alford, J Brodsky, M Heffner, A House, S Sangiorgio University of Massachusetts, Amherst MA, USA S Feyzbakhsh, S Johnston, CM Lewis, A Pocar **McGill University**, Montreal OC, Canada – T Brunner, Y Ito, K Murray Oak Ridge National Laboratory, Oak Ridge TN, USA L Fabris, RJ Newby, K Ziock Pacific Northwest National Laboratory, Richland, WA, USA I Arnquist, EW Hoppe, JL Orrell, G Ortega, C Overman, R Saldanha, R Tsang **Rensselaer Polytechnic Institute**, Troy NY, USA — E Brown, K Odgers F Bourque, S Charlebois , M Côté, D Danovitch, H Dautet, R Fontaine, F Nolet, S Parent, JF Pratte, T Rossignol, J Sylvestre, F SLAC National Accelerator Laboratory, Menlo Park CA, USA J Dalmasson, T Daniels, S Delaguis, A Dragone, G Haller, Kaufman, A Odian, M Oriunno, B Mong, PC Rowson, K Skarpaas University of South Dakota, Vermillion SD, USA J Daughhetee, R MacLellan Stanford University, Stanford CA, USA - R DeVoe, D Fudenberg, G Gratta, M Jewell, S Kravitz, G Li, A Schubert, M Weber, S Wu Stony Brook University, SUNY, Stony Brook NY, USA K Kumar, O Njoya, M Tarka Technical University of Munich, Garching, Germany P Fierlinger, M Marino TRIUMF, Vancouver BC, Canada

J Dilling, P Gumplinger, R Krücken, Y Lan, F Retière, V Strickland Yale University, New Haven CT, USA – Z Li, D Moore, Q Xia



### The nEXO Collaboration

## Backup

## Ion Fraction in LXe after $\alpha$ and $\beta$ Decay





EXO-200 with drift field  $380 \pm 5 \text{ V/cm}$ 

### **Ion Fraction**

<sup>214</sup>Bi<sup>+</sup> from <sup>214</sup>Pb β decay: 76.4 ± 5.7% <sup>218</sup>Po<sup>+</sup> from <sup>222</sup>Rn  $\alpha$  decay: 50.3 ± 3.0%

Phys. Rev. C 92(2015)045504