CMS(-TOTEM) Precision Proton Spectrometer at the LHC

Jan Kašpar

Seminar at CTU Prague 8 Jan 2019

- synergy of two experiments at interaction point 5 of LHC
- CMS experiment \rightarrow central detector
- TOTEM experiment \rightarrow forward proton taggers

Outline

- physics motivation \rightarrow experimental requirements
- detector apparatus
- detector calibration and proton reconstruction
- data-taking experience 2016-2018
- first physics analyses

Physics motivation

- forward protons: additional kinematics constraint \rightarrow background suppression (model indep.)
- access to beyond-standard-model physics: precision measurements, missing mass signatures
- some processes of interest:

- non-standard use of LHC: magnetic proton spectrometer
- very forward protons - very small displacement from beam (\sim mm)
- detectors need insertion to the LHC beam pipe
- movable detectors: only inserted once beams stable
- Iow impedance required: beam stability, reduced heat load
- Iow material budget, vacuum properties, ... required
- radiation hardness required
- high pile-up (~ 50 concurrent pp interactions)
- multiple protons in forward detectors \rightarrow tracking with pixels
- association of forward protons with central particles \rightarrow timing detectors
$\sigma_{v} \sim 2 \mathrm{~mm}$

- Roman Pot $(R P)=$ movable beam-pipe insertion, "container" for sensors

- impedance reduction: ferrite shielding (left), circular design (right)
- left: RP station = 2 units ("near" and "far", separated by few meters) right: RP unit = 1 horizontal, 2 vertical RPs

Roman Pot system

- RPs on both sides of CMS $\rightarrow 2$ arms (LHC sectors 45 and 56):

sector 45 (left arm) IP5 sector 56 (right arm)
- RP units at ≈ 210 and 220 m from the interaction point
- 220 m station includes additional RP for timing sensors

Parentheses: history

- conceived as common project between CMS (central) and TOTEM (forward)
- TDR in 2014 [CERN-LHC-2014-021]
- "accelerated" start in 2016
- motivated by "750 GeV excess" in di-photon spectrum observed in late 2015
- baseline PPS sensors not ready \rightarrow start with TOTEM sensors
- 2016
- tracker: 2 Si strip RPs (TOTEM) per arm
- 2017
- tracker: 1 strip (TOTEM) and 1 pixel (PPS) RP per arm
- timing: 1 RP per arm, diamonds + UFSD
- 2018
- tracker: 2 pixel RPs per arm
- timing: 1 RP per arm, diamonds + double-diamonds
- PPS fully under CMS

Tracker sensors : Si strips (TOTEM)

- pitch $66 \mu \mathrm{~m}$
- strips oriented at 45° wrt. edge facing beam
- cut edge \rightarrow insensitive margin only $\approx 50 \mu \mathrm{~m}$
- operated at $-20^{\circ} \mathrm{C}$, bias voltage $\approx 100 \mathrm{~V}$
- $5+5$ planes per RP (2 strip orientations for 2D reconstruction)

- 3D technology \rightarrow radiation hardness
- pixel size $100 \times 150 \mu \mathrm{~m} \rightarrow$ tracking efficiency
- insensitive edge $200 \mu \mathrm{~m} \rightarrow$ little acceptance loss
- 6 planes per RP
- planes tilted by 18° for improved resolution

Timing sensors

- diamonds
- radiation hard
- four $4 \times 4 \mathrm{~mm}$ sensors, pad geometry reflects track occupancy
- single plane resolution with oscilloscope: ≈ 80 ps
- four planes per RP
- custom electronics: amplifier + NINO (discriminator) + HPTDC

- double diamonds
- 2 diamond sensors connected to the same amplifier input
- single plane resolution with oscilloscope: ≈ 50 ps
- (up to) four planes per RP
- proton transport from IP to RPs: description similar to linear optics

- at IP (wrt. beam): vertex x^{*}, scattering angle θ_{x}^{*}
- $\xi \equiv \Delta p / p$: relative momentum loss
- at RPs (wrt. beam):

$$
x=D_{x}(\xi) \xi+L_{x}(\xi) \theta_{x}^{*}+v_{x}(\xi) x^{*}+\ldots
$$

- optical functions: dispersion D, effective length L, magnification v
- functions of ξ
- depend on crossing angle α, \ldots
- luminosity levelling \rightarrow complication
- 2016: no levelling
- 2017: crossing angle (6 discrete steps)
- 2018: crossing angle (continuous), β^{*}
- regular LHC fills: $\beta^{*} \approx 0.3 \mathrm{~m} \rightarrow$ beam squeezed at IP \rightarrow high luminosity
- leading terms in proton transport

$$
x=D_{x}(\xi) \xi+\ldots, \quad y=L_{y}(\xi) \theta_{y}^{*}+\ldots
$$

- example track distribution in plane perpendicular to beam
- (over)simplified interpretation: horizontal displacement due to ξ, vertical due to θ_{y}^{*}

- "pinch" point: due to $L_{y}(\xi)$ crossing zero (useful) for calibration
- diffractive protons $(\xi>0)$ displaced mainly horizontally \rightarrow PPS signal in horizontal RPs
- elastic protons $(\xi=0)$ displaced mainly vertically \rightarrow vertical RPs used for calibration

Proton reconstruction

- reconstruction of proton kinematics $=$ inverted proton transport

- 2 key ingredients:
- track positions at RPs
- subject to alignment corrections
- needed 2 RP measurements per arm (4 constraints) \Rightarrow determination of $\xi, \theta_{x}^{*}, \theta_{y}^{*}$ (and y^{*})
- optics knowledge

Alignment

- RPs move, beam may move \Rightarrow alignment delicate, possibly time-dependent

Multiple procedures:

- step 0: definition of RP position wrt. beam
- RP position critical for low- ξ acceptance \rightarrow ideally as close as possible
- LHC safety \rightarrow RPs in collimator "shadow" \rightarrow at $\approx 15 \sigma_{\text {beam }}$
- in practice: the same procedure as for collimator alignment
- step 1: special calibration fill
- low intensity \rightarrow RPs allowed at $\approx 5 \sigma$
- both horizontal and vertical RPs inserted \rightarrow data-driven beam position determination
- step 2: calibration transferred from calibration to physics (high-luminosity) fills
- for each fill separately

Alignment : Step 0

- low-intensity fill
- primary collimators scrape beam to have sharp edges
- RPs moved in slowly ($10 \mu \mathrm{~m}$ steps), until beam touch \rightarrow spike in beam-loss monitors downstream
- then RPs at the same number of "sigmas" as the primary collimators
- RPs retracted by pre-defined number of sigmas
- later: this position applied for each RP insertion (after declaration of stable beams in each fill)

Alignment : Step 1

[CERN-TOTEM-NOTE-2017-001]

- data taken in the low-intensity fill from Step 0
- left: red = track in the overlap between vertical and horizontal RPs
- relative alignment by minimisation of track-hit residuals

- right: alignment wrt. beam (applied per unit)
- red-blue histogram: from vertical RPs, dominated by elastic protons
- black line: interpolation
- green-black histogram: from horizontal RP
- orange line: extrapolation
- cyan dot: beam position

Alignment : Step 2

[CERN-TOTEM-NOTE-2017-001]

- data from physics fills "matched" to aligned data from calibration fill - using invariants
- physics distributions - e.g. inclusive ξ (or x) distribution:

- optics constraints
- systematic application to every fill (horizontal alignment):
- red/green: x matching / optics-based matching

- magnetic model of LHC (e.g. MADX program)
- certain parameters can be tuned
- "matching" = tuning to observations in RPs and beam-position monitors (beam orbit)
- found very significant corrections to the nominal optics
- step 1: calibration of $L_{y}(\xi)$
- based on correlations in elastic-proton hit distributions (low intensity calibration fill) [New J. Phys. 16 (2014) 103041]
- step 2: calibration of $D_{x}(\xi)$
- leading approximation: $x \approx D_{x} \xi, y \approx L_{y}(\xi) \theta_{y}^{*}$
- for $\xi=\xi_{0}: L_{y}=0 \Rightarrow$ "pinch" in hit distributions
- D_{X} estimated as x_{0} / ξ_{0}

- step 3: complete optics "matching" with full ensemble of observations

Efficiency studies

- major sources for tracking inefficiency
- radiation damage (both strips and pixels)
- incapability to resolve multiple tracks (strips only)
- reason:

- no mitigation possible
- time-dependent evaluation [CMS DP-2018/056]: frequency of multitrack events in zero-bias sample
- efficiency correlation with pile-up

- track distribution in a RP
- left: no radiation damage, right: with radiation damage

- temporary mitigation: HV increase
- efficiency evaluation: ratio between hit distribution in a sample and reference (prior to radiation damage)
- time-dependent
- position (x, y) dependent

Radiation damage : Si pixels

- pixel sensors radiation hard, but readout chips slow down with radiation:
- non-uniform irradiation \rightarrow different pixels respond in different bunch crossing (BX) slots:

- single latency for full read-out chip \rightarrow inefficiency in irradiated zone
- mitigation: detector shifts in technical stops \rightarrow dose distributed

- efficiency evaluation: time and position dependent

Acceptance

- example of proton acceptance
- nominal 2018 optics and collimator position
- RP position: ~ 15σ from beam (safety rules)
- y and M : rapidity and mass of products in central detector
- yellow: single-arm acceptance, green: double-arm acceptance
- low-mass limit: RP position, high-mass limit: collimator(s)

- Iuminosity collected in 2016 (left), 2017 (middle) and 2018 (right)

- total with RPs: > $110 \mathrm{fb}^{-1}$

DHEP (2018) 153]

- data from 2016 pre-TS2, $9.4 \mathrm{fb}^{-1}$
- enhance statistics \Rightarrow only single proton tag required
- signal processes: left, main background processes: right

- lepton I: μ or e
- known (QED) physics
- verification of the full chain: DAQ, reconstruction, alignment, optics, ...
- nevertheless first observation at such masses
- central selection
- $p_{T}(I)>50 \mathrm{GeV}, m(I)>110 \mathrm{GeV}$ to avoid Z peak
- II vertex separation
- II acoplanarity (back-to-back)
- 2016: no timing RPs \rightarrow background suppressed by matching CMS and RP data

- remaining background: pile-up of unrelated central and forward activity
- data-driven background estimate - $\mu \mu: 1.5 \pm 0.5$ events, ee: 2.36 ± 0.5 events
- matching events observed- $\mu \mu$: 12, ee: 8

- PPS continuation approved for Run III (2020-2021)
- $\sqrt{s}=14 \mathrm{TeV}$
- goal $300 \mathrm{fb}^{-1}$
- current detectors damaged by radiation \rightarrow replacement needed
- replacement of tracking detectors
- technology very similar to the existing 3D pixels
- geometry and granularity also similar
- detector package equipped with internal movement system \rightarrow distribution of radiation dose
- replacement of timing detectors
- double-diamonds foreseen in 2 RPs per arm
- 8 planes ~ 18 ps resolution
- Precision Proton Spectrometer: extension of CMS to tag forward protons - additional information \Rightarrow model-independent background suppression - access to new-physics processes
- status
- > $110 \mathrm{fb}^{-1}$ of data collected in 2016, 2017 and 2018
- final detector apparatus as of 2018 (tracker + timing)
- tracker calibration (alignment, optics): advanced development
- tracker efficiency: advanced development
- timing calibration: active development
- physics analyses
- first publication: di-leptons \Rightarrow PPS works as desired
- ongoing analyses: di-photons (anomalous couplings), ...
- outlook
- continuation in Run III confirmed

