CMS(-TOTEM) Precision Proton Spectrometer at the LHC

Jan Kašpar

Seminar at CTU Prague 8 Jan 2019

Basic idea

- synergy of two experiments at interaction point 5 of LHC
 - $\circ~\text{CMS}$ experiment \rightarrow central detector
 - $\circ~\text{TOTEM}$ experiment \rightarrow forward proton taggers

- physics motivation \rightarrow experimental requirements
- detector apparatus
- detector calibration and proton reconstruction
- data-taking experience 2016 2018
- first physics analyses

Physics motivation

- forward protons: additional kinematics constraint \rightarrow background suppression (model indep.)
- access to beyond-standard-model physics: precision measurements, missing mass signatures
- some processes of interest:

- non-standard use of LHC: magnetic proton spectrometer
- very forward protons very small displacement from beam (~ mm)
 o detectors need insertion to the LHC beam pipe
 - movable detectors: only inserted once beams stable
 - low impedance required: beam stability, reduced heat load
 - low material budget, vacuum properties, ... required
 - radiation hardness required
- high pile-up (\sim 50 concurrent pp interactions)

 $\circ~$ multiple protons in forward detectors \rightarrow tracking with pixels

 $\circ\,$ association of forward protons with central particles \rightarrow timing detectors

Roman Pots

• Roman Pot (RP) = movable beam-pipe insertion, "container" for sensors

impedance reduction: ferrite shielding (left), circular design (right)

 left: *RP station* = 2 units ("near" and "far", separated by few meters) right: *RP unit* = 1 horizontal, 2 vertical RPs

• RPs on both sides of CMS \rightarrow 2 arms (LHC sectors 45 and 56):

sector 45 (left arm) IP5 sector 56 (right arm)

- $\circ~$ RP units at \approx 210 and 220 m from the interaction point
- $\circ~$ 220 m station includes additional RP for timing sensors

- conceived as common project between CMS (central) and TOTEM (forward)
 TDR in 2014 [CERN-LHC-2014-021]
- "accelerated" start in 2016
 - $\circ~$ motivated by "750 GeV excess" in di-photon spectrum observed in late 2015 $\circ~$ baseline PPS sensors not ready $\rightarrow~$ start with TOTEM sensors

• 2016

 $\circ\,$ tracker: 2 Si strip RPs (TOTEM) per arm

• 2017

- \circ tracker: 1 strip (TOTEM) and 1 pixel (PPS) RP per arm
- \circ timing: 1 RP per arm, diamonds + UFSD

• 2018

- tracker: 2 pixel RPs per arm
- timing: 1 RP per arm, diamonds + double-diamonds
- PPS fully under CMS

- pitch 66 μm
- strips oriented at 45° wrt. edge facing beam
- cut edge \rightarrow insensitive margin only \approx 50 μm
- operated at $-20~^\circ\text{C},$ bias voltage $\approx 100~\text{V}$
- 5+5 planes per RP (2 strip orientations for 2D reconstruction)

- 3D technology \rightarrow radiation hardness
- pixel size 100 x 150 $\mu m \rightarrow$ tracking efficiency
- insensitive edge 200 $\mu m \rightarrow$ little acceptance loss
- 6 planes per RP
 - $\,\circ\,$ planes tilted by 18° for improved resolution

diamonds

- radiation hard
- $\circ~$ four 4 \times 4 mm sensors, pad geometry reflects track occupancy
- $\circ~$ single plane resolution with oscilloscope: \approx 80 ps
- four planes per RP
- custom electronics: amplifier + NINO (discriminator) + HPTDC

double diamonds

- $\circ\,$ 2 diamond sensors connected to the same amplifier input
- $\circ\,$ single plane resolution with oscilloscope: \approx 50 ps
- \circ (up to) four planes per RP

Proton transport

proton transport from IP to RPs: description similar to linear optics

- at IP (wrt. beam): vertex x^* , scattering angle θ_X^*
- $\xi \equiv \Delta p/p$: relative momentum loss
- at RPs (wrt. beam):

$x = D_X(\xi)\,\xi + L_X(\xi)\,\theta_X^* + v_X(\xi)\,x^* + \dots$

 \circ optical functions: dispersion *D*, effective length *L*, magnification *v*

- functions of ξ
- depend on crossing angle α , ...
- luminosity levelling \rightarrow complication
 - 2016: no levelling
 - 2017: crossing angle (6 discrete steps)
 - \circ 2018: crossing angle (continuous), β^*

Typical optics

- regular LHC fills: $\beta^* \approx 0.3 \text{ m} \rightarrow \text{beam}$ squeezed at IP \rightarrow high luminosity
- leading terms in proton transport

$$x=D_x(\xi)\,\xi+\dots\,,\quad y=L_y(\xi)\,\theta_y^*+\dots$$

- \circ example track distribution in plane perpendicular to beam
 - (over)simplified interpretation: horizontal displacement due to ξ , vertical due to θ_v^*

- "pinch" point: due to $L_y(\xi)$ crossing zero (useful) for calibration
- diffractive protons ($\xi > 0$) displaced mainly horizontally \rightarrow PPS signal in horizontal RPs
- $\circ\,$ elastic protons ($\xi\,$ = 0) displaced mainly vertically $\rightarrow\,$ vertical RPs used for calibration

reconstruction of proton kinematics = inverted proton transport

- 2 key ingredients:
 - track positions at RPs
 - subject to alignment corrections
 - needed 2 RP measurements per arm (4 constraints)
 - \Rightarrow determination of ξ , θ_X^* , θ_Y^* (and y^*)
 - optics knowledge

Alignment

• RPs move, beam may move \Rightarrow alignment delicate, possibly time-dependent

Multiple procedures:

- step 0: definition of RP position wrt. beam
 - $\circ\,$ RP position critical for low- ξ acceptance ightarrow ideally as close as possible
 - $\circ~$ LHC safety \rightarrow RPs in collimator "shadow" \rightarrow at \approx 15 $\sigma_{\rm beam}$
 - \circ in practice: the same procedure as for collimator alignment

• step 1: special calibration fill

- $\circ~$ low intensity \rightarrow RPs allowed at \approx 5 σ
- $\circ\,$ both horizontal and vertical RPs inserted $\rightarrow\,$ data-driven beam position determination
- step 2: calibration transferred from calibration to physics (high-luminosity) fills
 - for each fill separately

- low-intensity fill
- primary collimators scrape beam to have sharp edges
- RPs moved in slowly (10 μm steps), until beam touch \rightarrow spike in beam-loss monitors downstream

 $\circ\,$ then RPs at the same number of "sigmas" as the primary collimators

- RPs retracted by pre-defined number of sigmas
 - $\circ\,$ later: this position applied for each RP insertion (after declaration of stable beams in each fill)

[CERN-TOTEM-NOTE-2017-001]

- data taken in the low-intensity fill from Step 0
- left: red = track in the overlap between vertical and horizontal RPs
 relative alignment by minimisation of track-hit residuals

- right: alignment wrt. beam (applied per unit)
 - $\circ\,$ red-blue histogram: from vertical RPs, dominated by elastic protons
 - black line: interpolation
 - $\circ\,$ green-black histogram: from horizontal RP
 - orange line: extrapolation
 - $\circ\,$ cyan dot: beam position

[CERN-TOTEM-NOTE-2017-001]

- data from physics fills "matched" to aligned data from calibration fill using invariants
 - physics distributions e.g. inclusive ξ (or x) distribution:

optics constraints

- systematic application to every fill (horizontal alignment):
 - red/green: x matching / optics-based matching

[CERN-TOTEM-NOTE-2017-002]

- magnetic model of LHC (e.g. MADX program)
 - certain parameters can be tuned
 - "matching" = tuning to observations in RPs and beam-position monitors (beam orbit)
 - $\circ\,$ found very significant corrections to the nominal optics
- step 1: calibration of $L_y(\xi)$
 - based on correlations in elastic-proton hit distributions (low intensity calibration fill) [New J. Phys. 16 (2014) 103041]
- step 2: calibration of $D_X(\xi)$
 - \circ leading approximation: $x \approx D_X \xi$, $y pprox L_y(\xi) \theta_y^*$
 - for $\xi = \xi_0$: $L_y = 0 \Rightarrow$ "pinch" in hit distributions
 - D_x estimated as x_0/ξ_0

• step 3: complete optics "matching" with full ensemble of observations

- major sources for tracking inefficiency
 - radiation damage (both strips and pixels)
 - o incapability to resolve multiple tracks (strips only)

Multitrack inefficiency : Si strips

• no mitigation possible

reason:

• time-dependent evaluation [CMS DP-2018/056]: frequency of multitrack events in zero-bias sample

• efficiency correlation with pile-up

Seminar at CTU Prague

8 Jan 2019

• track distribution in a RP

 $\circ\,$ left: no radiation damage, right: with radiation damage

- temporary mitigation: HV increase
- efficiency evaluation: ratio between hit distribution in a sample and reference (prior to radiation damage)
 - time-dependent
 - position (x, y) dependent

- pixel sensors radiation hard, but readout chips slow down with radiation:
 - $\circ~$ non-uniform irradiation \rightarrow different pixels respond in different bunch crossing (BX) slots:

 $\circ~$ single latency for full read-out chip \rightarrow inefficiency in irradiated zone

- mitigation: detector shifts in technical stops \rightarrow dose distributed

efficiency evaluation: time and position dependent

Acceptance

example of proton acceptance

- $\circ\,$ nominal 2018 optics and collimator position
- $\circ\,$ RP position: \sim 15 σ from beam (safety rules)
- y and M: rapidity and mass of products in central detector
- yellow: single-arm acceptance, green: double-arm acceptance
- low-mass limit: RP position, high-mass limit: collimator(s)

Statistics

• luminosity collected in 2016 (left), 2017 (middle) and 2018 (right)

 \circ total with RPs: > 110 fb⁻¹

First physics analysis : Di-leptons in 2016 data

[JHEP (2018) 153]

- data from 2016 pre-TS2, 9.4 fb⁻¹
- enhance statistics \Rightarrow only single proton tag required

 $\circ\,$ signal processes: left, main background processes: right

 \circ lepton *I*: μ or e

• known (QED) physics

verification of the full chain: DAQ, reconstruction, alignment, optics, ...
 nevertheless first observation at such masses

central selection

- $p_T(I) > 50$ GeV, m(II) > 110 GeV to avoid Z peak
- II vertex separation
- II acoplanarity (back-to-back)

• 2016: no timing RPs \rightarrow background suppressed by matching CMS and RP data

remaining background: pile-up of unrelated central and forward activity

• data-driven background estimate – $\mu\mu$: 1.5 \pm 0.5 events, ee: 2.36 \pm 0.5 events

- PPS continuation approved for Run III (2020 2021)
 - $\circ \sqrt{s} = 14 \text{ TeV}$
 - \circ goal 300 fb⁻¹
- current detectors damaged by radiation \rightarrow replacement needed
- replacement of tracking detectors
 - $\circ\,$ technology very similar to the existing 3D pixels
 - geometry and granularity also similar
 - $\circ\,$ detector package equipped with internal movement system \rightarrow distribution of radiation dose
- replacement of timing detectors
 - double-diamonds foreseen in 2 RPs per arm
 - 8 planes \sim 18 ps resolution

Summary

- Precision Proton Spectrometer: extension of CMS to tag forward protons
 - $\circ~$ additional information \Rightarrow model-independent background suppression
 - access to new-physics processes

status

- \circ > 110 fb⁻¹ of data collected in 2016, 2017 and 2018
- \circ final detector apparatus as of 2018 (tracker + timing)
- tracker calibration (alignment, optics): advanced development
- tracker efficiency: advanced development
- timing calibration: active development

physics analyses

- $\circ~$ first publication: di-leptons \Rightarrow PPS works as desired
- $\circ\,$ ongoing analyses: di-photons (anomalous couplings), ...

outlook

continuation in Run III confirmed